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Approach 

Often, classifying observations of data into one class or another (e.g., determining 

whether an object is a high value target based on pedestrian traffic characteristics) is a 

difficult problem as observations often cannot be easily distinguished from each other 

using the basic characteristics exhibited by the observations. Kernel methods provide a 

means to convert those characteristics into a higher dimensional space that allows for 

the classes to more readily distinguish themselves. Bayesian methods, in concert with 

kernel methods, allow for enhanced classification, where the result of a Bayesian kernel 

model is a likelihood (or probability) that the observation falls into a particular class, not 

simply the class itself. Bayesian methods require a prior probability distribution to 

describe parameters, and observations transform this prior distribution into a more 

descriptive likelihood of classification. Previous developments in Bayesian kernel 

models assume a normal distribution as the prior distribution, which can be a 

problematic assumption for some data sets. 

 Our approach explored different prior distributions for classification problems: 

(i) a beta distribution for binary classification problems and (ii) a Dirichlet distribution 

(an extension of the binomial distribution) for multi-class classification problems, as 

well as (iii) applying these approaches in online learning environments, where data 

processing occurs one observation at a time and the classification algorithm improves 

over time with new observations. 

 This report essentially summarizes a paper in submission at Computational 

Statistics and Data Analysis [MacKenzie et al. 2013], which is appended to this report. 
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Scientific Challenges and Opportunities  

A primary challenge of this research lies in successfully classifying some difficult 

classification problems (e.g., one class appears much more frequently than another 

class) and in improving the performance of the algorithm (across several metrics) 

relative to existing approaches.  

 

Significance 

The significance of this approach, as it turns out, will be to provide similar accuracy to 

other classification approaches in a significantly reduced amount of computational 

time, especially for problems of online learning. 

 

Accomplishments 

We describe accomplishments with respect to the first three tasks of the proposed work. 

 

Task 1: Binary Classification. We developed the formulation in Eq. (1) to classify the 

observations of an unknown data point i represented by the vector   . The probability 

that data point i is positively labeled follows the beta distribution where    represents 

the unknown classification of data point i and   is a vector of m known classifications 

(the training set). Because the kernel function          describes the similarity between 

two data points,    and   , integrating the use of a kernel function and a beta prior 

distribution improves classification capability. The number of positive and negative 

data points often differs in a training set, and the probability distribution on xi may 

reflect that the training set has more of one class than the similarity between points as 

given by the kernel functions. We resolve this problem by adding weighting parameters 

     and     , where    and    are the number of negative and positive labels, 

respectively, in the training set. The parameters     and     are the prior 

distribution parameters for the beta distribution.   
 

                 
  

 
         

        

   
  

 
         

         

  (1) 

 

We tested the beta kernel model on several data sets and compare the results to 

the relevance vector machine (RVM), the traditional soft-margin SVM [Cristianini and 

Shawe-Taylor 2000, Shawe-Taylor and Cristianini 2004], and a weighted soft-margin 

SVM [Chew et al. 2001]. The SVM is a kernel-based linear classifier that uses a relatively 

small number of vectors to create a boundary between the classes in the feature space. 

The soft-margin SVM assigns a cost parameter for misclassifications. In the weighted 

SVM, we assign a different cost for the misclassification of each class:       for the 

positive class and       for the negative class, where   is a constant cost parameter to 
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be optimized. We used LIBSVM 3.0 [Chang and Lin 2001] for the SVM models and the 

code developed by Tipping [2009] for the RVM. 

 The beta kernel model uses a uniform prior (α = 1 and β = 1) with a weighted 

likelihood as given in Eq. (1). If the expectation of the posterior probability is greater 

than 0.5, the unknown point is positively labeled. A non-uniform prior could select α 

and β so that the expected value of the prior equals the proportion of positively 

classified data points in the training set, and the threshold could be the expectation of 

the prior. The non-uniform prior’s classifications and the uniform prior’s classifications 

are identical, however, because both classifiers ultimately rely on comparing the 

summation of the kernel functions of the positively labeled training data points to that 

of the negatively labeled training data points (the Appendix of MacKenzie et al. [2013] 

provides a proof of this). 

The radial basis kernel function in Eq. (2) was used throughout this work and in 

MacKenzie et al. [2013], where σ > 0 is tuned to optimize each classifier. The radial basis 

kernel is perhaps the most popular kernel function because the image of the function 

lies on (0,1) and the kernel matrix has full rank [Scholkopf and Smola 2002]. 
 

               
       

 

   
  (2) 

 

 We applied this new formulation, outlined in MacKenzie et al. [2013], to six data 

sets available from the University of California-Irvine Machine Learning Repository 

(Parkinson, Haberman's survival, Arcene, Spam, Transfusion, Breast cancer), one data 

set from the Princeton University Gene Expression Project (Colon cancer), and one from 

National Weather Center at the University of Oklahoma (Tornado). We divided each of 

the data sets into training, tuning, and testing sets. The training set comprises 50 percent 

of each data set, the tuning set 20 percent, and the testing set 30 percent. In each 

individual trial, the σ in the kernel function (as well as the cost parameter   in the SVM) 

is selected that achieves the highest accuracy score in the tuning set. The training and 

tuning set were combined to retrain the classifier using the optimal σ (and  ) and test it 

on the testing set. 

Table 1 displays the mean performance across 200 repetitions for the true 

positive (TP) rate, the true negative (TN) rate, the accuracy score           , and 

computational time (in seconds) for the beta kernel approach we developed.  

 The beta kernel approach had the best accuracy for many of the benchmark data 

sets. Perhaps more importantly, our approach significantly outperformed the existing 

approaches on all data sets in terms of computational time.  

 

Task 2. Multi-class Classification. Binary classification problems have two classes (a 

positive and negative class), but multi-class classification problems have     classes. 
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We developed the formulation in Eq. (3) for the Dirichlet distribution describing the 

likelihood of classifying an unknown data point i in one of the N classes, and    can be 

an integer from 1 to N.   Given a Dirichlet prior represented by parameters           , 

the weighted kernel approach can be used to derive the posterior distribution that also 

follows a Dirichlet distribution, where     is the number of known data points not in 

the nth class and m is the total number of known observations. Weighting parameters 

are included to account for data where the number in each class is not the same. 
 

Table 1. Performance of the binary classification approaches. 

Data set Metric Beta kernel RVM Traditional SVM Weighted SVM 

Parkinson Acc 0.635 0.068 0.363 0.524 

 
TP 0.680 1.000 1.000 0.710 

 
TN 0.710 0.060 0.280 0.620 

 
Time 0.200 22.880 3.870 4.090 

Haberman's 

survival 

Acc 0.487 0.072 0.218 0.450 

TP 0.860 1.000 0.990 0.810 

 
TN 0.370 0.040 0.120 0.400 

 
Time 0.280 5.010 20.960 11.010 

Arcene Acc 0.660 0.125 0.125 0.125 

 
TP 0.760 0.130 0.130 0.130 

 
TN 0.720 1.000 1.000 1.000 

 
Time 4.850 38.740 371.540 622.880 

Spam Acc 0.463 0.260 0.351 0.564 

 
TP 0.330 0.180 0.230 0.480 

 
TN 0.980 0.990 0.990 0.900 

 
Time 0.960 348.520 26.1000 27.560 

Colon cancer Acc 0.716 0.250 0.249 0.466 

 
TP 0.780 0.250 0.250 0.500 

 
TN 0.830 1.000 1.000 0.900 

 
Time 0.220 5.690 29.710 29.530 

Transfusion Acc 0.533 0.103 0.108 0.522 

 
TP 0.470 0.040 0.040 0.430 

 
TN 0.710 1.000 0.980 0.720 

 
Time 1.770 66.230 266.010 106.240 

Breast cancer Acc 0.100 0.105 0.105 0.298 

 
TP 0.110 0.110 0.110 0.510 

 
TN 0.940 1.000 1.000 0.640 

 
Time 0.050 46.960 2.840 2.700 

Tornado Acc 0.533 0.103 0.108 0.522 

 
TP 0.470 0.040 0.040 0.430 

 
TN 0.710 1.000 0.980 0.720 

 
Time 5.960 1621.130 115.250 160.690 
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  (3) 

 

 We applied this new formulation to four data sets available from the University 

of California-Irvine Machine Learning Repository (Iris, Wine, Satellite, Steel faults). 

Table 2 displays the mean performance across 200 repetitions for the overall accuracy 

score           
 
       , where      is the proportion of observations in the nth class 

accurately classified. The computational time (in seconds) for the beta kernel approach 

is also depicted. We developed the beta kernel model with both uniform and non-

uniform Dirichlet parameters, and compared it to the multi-class SVM and 

Classification and Regression Trees (CART) [Hastie et al. 2001]. 

 Our Bayesian kernel approach with the weighted Dirichlet prior distribution did 

not perform across several metrics as well as the other existing approaches, especially 

CART. We will continue to explore this approach, but initial results do not appear 

promising. 
 

Table 2. Performance of the multi-class classification approaches. 

Data set Metric Beta kernel RVM Traditional SVM Weighted SVM 

Iris Acc 0.939 0.943 0.955 0.945 

 

Time 0.120 0.110 0.480 0.010 

Wine Acc 0.948 0.949 0.973 0.911 

 

Time 0.160 0.150 0.700 0.030 

Satellite Acc 0.784 0.834 0.866 0.788 

 

Time 33.880 33.780 111.680 1.130 

Steel faults Acc 0.733 0.733 0.753 0.693 

 

Time 7.960 7.800 78.980 1.130 

 

Task 3. Online Learning. Often classification algorithms are deployed in a “batch” setting, 

where classification parameters are found at once from multiple training cases.  This is 

counter to “online” learning, where processing occurs one observation at a time.  Such 

an approach allows for very large training sets and for updating classification 

parameters as new data arrive (e.g., sensor data streaming regularly).  We demonstrate 

the application of the beta kernel model to online learning with the benchmark 

twonorm data set, downloaded from the Delve project at the University of Toronto.  

We select two data points for which we assume the characteristics but not the 

outcomes are known. At each iteration, a unique set of 10 data points whose outcomes 

are known is used to update beta parameters α and β for each of the two unknown data 

points. Table 3 depicts the updated α and β and the expected posterior probability. 
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Figure 1 displays the beta distribution's probability density function as α and β are 

updated for each of these two data points. 
 

Table 3. Updated parameters for the beta kernel model with twonorm data. 

Iteration 
Data point 1 Data point 2 

α β     α β     

Prior 1.00 1.00 0.50 1.00 1.00 0.50 

1 1.21 1.35 0.47 1.04 2.32 0.31 

2 2.05 1.54 0.57 1.28 3.35 0.28 

5 2.18 3.01 0.42 1.31 6.66 0.16 

10 4.92 4.97 0.50 1.70 10.47 0.14 

20 8.29 8.40 0.50 2.59 19.54 0.12 

30 13.50 11.71 0.54 3.59 27.73 0.11 
 

As the classifier receives more information, the first data point is much more 

likely to result in a positive outcome than the second data point. The expected 

probability for the first data point is close to 0.5 during all the iterations. Even after 30 

iterations, the beta distribution's density function (the dark solid line in Figure 1a) is 

still wide enough that the probability of a positive classification could be between 0.25 

and 0.75. The first data point’s expected probability is 0.54. Much uncertainty exists 

over whether this data point is positively or negatively labeled; however, the posterior 

probability is much greater than 0.25, the fraction of positively labeled data points in the 

data set. Updating the parameters for the second data point significantly reduces the 

uncertainty of this data point's outcome. After only 5 iterations or 50 data points, the 

expected probability of a positive classification is 0.16. After 30 iterations, the expected 

probability is only 0.11, and most of the beta distribution's density function is less than 

0.25.  It seems pretty clear that the second data point is a negative classification. 

 

 
Figure 1. Posterior probability distributions for two different data points in the twonorm data set. 
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Task 4. Application. We have applied the Bayesian kernel approach to a risk-based 

problem in network reliability, which could be of interest to the Army. Network 

reliability problems are typically solved with a max-flow min-cut algorithm following 

the complete or partial disruption of one or more components in the network [Rocco 

and Muselli 2007]. That is, an algorithm is performed to determine the connectivity and 

disrupted flow across the network, where the ratio of disrupted flow to as-planned flow 

provides a measure of network reliability. Such an algorithm can take a significant 

amount of computational time, especially for large networks.  

We deploy a novel application of our technique to train the Bayesian kernel 

algorithm with flows along the links of a network (50,000 flows randomly chosen to 

generate a training set) and use the traditional max-flow min-cut algorithm to 

determine the connectivity of the network (classified as “desired flow from source to 

sink node achieved” or “not achieved”). The application of the Bayesian kernel 

approach can drastically reduce the computational time to determine network 

connectivity of a disrupted network (or potentially disrupted network). Our very initial 

results suggest promising results, but more work remains in (i) comparing to the max-

flow min-cut algorithm with respect to computational time, (ii) optimizing the tuning 

parameter ( ) of the radial basis kernel function to improve performance, (iii) 

optimizing the “decision rule” for classifying an observation based on its probability of 

falling in that class. 

The three measures of performance for the various training and testing sets are 

provided in Eq. 4. Acc is the accuracy of the approach is the proportion of observations 

that were correctly classified (when an observation with a 0.51 probability or more of 

the network being in an operating state is classified as such). Sens is the quantitative 

descriptor of sensitivity, and Spec is the quantitative descriptor of specificity. TP, TN, 

FP, and FN are the counts of true positive classifications, true negative, false positive, 

and false negative observations, respectively. 
 

    
     

           
      

  

     
      

  

     
 (4) 

 

Not surprisingly, as the training size increases, predictive accuracy improves, 

according to Table 4. This represents only one run of training and testing sets, but more 

runs should be performed to gain a better understanding of average performance. 

In a different initial experiment, three different runs were performed with 

varying training, tuning, and testing set sizes. For the tuning phase, an optimal radial 

basis function parameter   was computed based on the maximum value of the accuracy 

measure. In the testing phase, the tuning and training sets were combined into one 

training set with the   found in the tuning phase. Set 1 contains 5% tuning, 5% training, 

and 90% testing data. Set 2 contains 10%, 20%, and 70% respectively, and Set 3 contains 
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20%, 30%, and 50% respectively. In both phases the prior parameters were compute 

such that the mean of the beta distribution is equal to the proportion of the positive 

classifications. 

Results of this initial experiment are found in Table 5. The reduction in testing 

accuracy is puzzling, and we will explore this further with more experimentation. 

Army-specific applications of this idea could include communication and 

transportation networks or PERT-type project management networks.  
 

Table 4. Performance metrics of one run of different sized training sets at RBF kernel parameter       

and      , network reliability example. 

Training size Metric Beta kernel 

5000 Acc 0.918 

 Sens 0.879 

 

Spec 0.935 

15000 Acc 0.920 

 

Sens 0.842 

 Spec 0.952 

25000 Acc 0.924 

 Sens 0.869 

 

Spec 0.947 

 

Table 5. Updated parameters for the beta kernel model with three sets identified by 

(Tuning/Training/Testing), network reliability example. 

Iteration 
Set 1 (5%/5%/90%) Set 2 (10%/20%/70%) Set 3 (20%/30%/50%) 

      
 

   
       

 

   
       

 

   
 

Tuning 0.63 0.94 0.30 0.90 0.96 0.30 0.97 0.97 0.29 

Testing 0.63 0.71 0.15 0.90 0.78 0.20 0.97 0.75 0.16 

 

Collaborations and Leveraged Funding 

Previously a graduate student when this STIR proposal was originally submitted, 

Cameron MacKenzie is now an Assistant Professor with the Naval Postgraduate School. 

The Bayesian kernel approach developed here is a good candidate to address some of 

the DoD classification problems that Dr. MacKenzie will encounter. One application 

area of interest to Dr. MacKenzie is adversary identification with specific problems in 

border security. 
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Conclusions 

This grant explored the usefulness of the beta kernel model and compared the model’s 

accuracy with the RVM (a binary classification algorithm based on Gaussian 

distributions) and the SVM. The beta kernel model relies on the well-known beta-

binomial Bayesian formula, and deploying a kernel function as a measure of similarity 

between two different data points enables us to apply these updating techniques to 

classification problems. Incorporating weighting parameters or beginning with a non-

uniform prior can help the model correctly classify imbalanced data sets. 

The extensive numerical testing of the beta kernel model with the RVM and SVM 

indicates that the beta kernel model may have some advantages that can be exploited 

for classification problems. The beta kernel model performs similarly to the SVM and a 

weighted SVM for the eight data sets in which the minority class composes between 7 

and 44% of the data. The beta kernel model consistently performs better than the RVM. 

If the user desires a probabilistic data mining tool, the beta kernel model may be a 

superior choice to the RVM. When the minority class comprises only 5% of the data, the 

beta kernel model generates accuracies on par with those of under-sampling the data 

combined with either the RVM or SVM. The accuracy of the beta kernel model is 

significantly better than undersampling and over-sampling, among others, for two of 

the heavily imbalanced data sets. This suggests that for heavily imbalanced data sets, 

the beta kernel model should be considered along with under-sampling the RVM or 

under-sampling the SVM. 

The online learning experiment reveals that the beta kernel model outperforms 

the RVM and LASVM (an incremental learning version of the SVM) if 50 or fewer data 

points are available. Finally, the beta kernel model calculates posterior probabilities 

very quickly and runs faster than the RVM and SVM, both of which rely on solving 

optimization problems. 

As this work represents the first extensive analysis and testing of the beta kernel 

model, we believe the model can potentially become a useful tool in machine learning. 

The beta kernel model may not provide significant advantages for classifying data sets 

where the number in each class is relatively the same, but the model carries other 

advantages, like fast run-times. If the data set is heavily imbalanced, the beta kernel 

model may be the most accurate. If the data arrive incrementally, the model easily and 

quickly updates to incorporate the new data and can be relatively accurate with just a 

few data points.  

Unfortunately, multi-class classification with a Dirichlet prior distribution did 

not produce favorable results, though future work may improve this initially 

disappointing result. 

The novel application of our approach to network reliability as a less 

computationally expensive alternative to max-flow min-cut algorithms has initially 
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shown promising results. A paper further elucidating this idea will be finished in the 

Summer of 2013. 

 

Technology Transfer 

None. 

 

Future Work 

This initial STIR funding has led to several future research ideas that we hope to 

explore.  

 

Hierarchical Bayesian Kernel Methods. As with any statistical analysis, the ability of 

Bayesian methods (whether or not they are integrated with kernel methods) suffers 

when data describing events of interest are sparse. This is particularly true in the 

analysis of risk of low-likelihood, potentially high-impact events: very little data exist to 

describe such events and performing any type of statistical analysis poses challenges. 

Another extension of Bayesian methods is the hierarchical Bayesian model whose 

approach would borrow data from similar systems or subsystems in order to evaluate 

extreme events that usually lack the availability of large datasets necessary to estimate 

parameters.  

 We would like to pursue, in a longer term research project, the integration of (i) 

the Bayesian kernel models resulting from the currently funded research project with 

(ii) hierarchical Bayesian models. Such hierarchical Bayesian kernel (HBK) methods 

would result in many benefits where an accurate estimation of risk parameters is 

improved by the use of kernel functions even though direct data might be unavailable. 

 

Count Data Modeling. With the STIR, we explored Bayesian kernel methods for 

classification problems. A future, and very unique, area we hope to pursue is the 

application of the Bayesian kernel methods (and also HBK methods) to count data as 

opposed to classification data. Count data describe the number of occurrences of an 

event over a given time period (e.g., three earthquakes in one year). In particular, we 

are interested in describing the likelihood of disruptive events in networks. For 

example, in critical infrastructure systems, our proposed HBK methods can be used to 

estimate probabilities of component failure given information on past failures of similar 

components in other systems or subsystems. 

 

Applications in Resilience. Consider the system state transition in Figure 2, describing the 

onset and eventual recovery from a disruptive event    occurring at time   . The PI has 

explored system, and specifically network, recovery and resilience in several recent 
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works [Barker et al. 2013, Barker and Baroud 2012, Baroud et al. 2013a,b, Pant et al. 

2012, Pant et al. 2013]. 
 

 
Figure 2. System state transition with time, from original to disrupted to recovered states. 

 

The above works propose, extend, and apply a paradigm for assessing the 

resilience of a system by quantifying the damage to the network service function     . 

For example, if the network under study is an inland waterway network,      could 

measure commodity flows across waterway links. Given a particular disruptive event, 

  , Eq. (4) provides a more specific quantification of the value of resilience            

evaluated at time      (  ,   ), where set   is the set of possible disruptive events. 
 

           
                     

                 
        (4) 

 

 In future work, we wish to apply the non-Gaussian Bayesian kernel models 

discussed resulting from the ARO STIR to model the resilience of disrupted systems. 

The outcome of Eq. (4),           , lies between 0 and 1, with 0 representing a completely 

non-functional system and 1 representing a recovered system. Therefore, a suitable 

conjugate prior in this case is the Beta distribution, for which the range of the random 

variable is [0,1]. Eq. (5) is a conceptual representation of the Beta probability distribution 

with parameters     and    ,  where   is the resilience described in Eq. (4) and 

       is the beta function. Using a set of covariates that relate to the disrupted system 

(e.g., system characteristics, the disruption itself, recovery time, cost metrics), the 

Bayesian kernel model estimates resilience according to the characteristics of each data 

point. 
 

     
            

      
 (5) 

 

We feel that system recovery and resilience is an important topic, particularly 

within the DoD, and this represents an important extension of the Bayesian kernel and 

HBK approaches. 
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MacKenzie, C.A., T.B. Trafalis, and K. Barker. 2013. Non-Gaussian Bayesian Kernel 

Methods for Binary Classification and Online Learning Problems. In review at 

Computational Statistics and Data Analysis. 

 

Papers in progress 

Baroud, H., K. Barker, and C.A. MacKenzie. 2013. Bayesian Kernel Models for Count 

Data. To be submitted to Computational Statistics and Data Analysis, August 2013. 

Baroud, H., K. Barker, C.M. Rocco, and C.A. MacKenzie. 2013. Application of Bayesian 

Kernel Methods to Network Reliability. To be submitted to Reliability Engineering and 

System Safety, July 2013. 

 

Conference papers and presentations 

Baroud, H., K. Barker, R. Lurvey, and C.A. MacKenzie. 2013. Bayesian Kernel Models 

for Disruptive Event Data. Proceedings of the 2013 Industrial and Systems Engineering 

Research Conference, San Juan, PR, May 2013. Best Paper Award, Homeland Security 

Track. 

Baroud, H., K. Barker, C. MacKenzie, and T.B. Trafalis. 2012. Bayesian Kernel Models 

for Count Data. INFORMS Annual Meeting, Phoenix, AZ, October 2012. 

 

Ph.D. student support (on-going) 

Hiba Baroud 
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